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Abstract 

In this provocation, I would like to develop what I call the geometric rationality of algorithmic decisions, which 
measures social relations using the distance of data points in abstract geometric spaces. This analysis follows on 
to the work by Claudia Aradau and myself, where we introduce the concept of ‘in-betweenness’ in abstract 
information spaces as a foundation of algorithmic prediction. In this paper, I elaborate how algorithmic innocence, 
i.e. innocence before an algorithm, is (pre-)decided by a geometric rationality of algorithms. I show how (non)-
innocent subjects are created proactively and to be acted upon pre-emptively by algorithmic manipulation of an 
abstract feature space. 
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Introduction 

In this provocation, I would like to develop what I call the geometric rationality of algorithmic decisions, 
which measures social relations using the distance of data points in abstract geometric spaces. This 
analysis follows on to the work by Claudia Aradau and myself (Aradau and Blanke 2017), where we 
introduce the concept of ‘in-betweenness’ in abstract information spaces as a foundation of 
algorithmic prediction. In this paper, I elaborate how algorithmic innocence, i.e. innocence before an 
algorithm, is (pre-)decided by a geometric rationality of algorithms. I show how (non)-innocent 
subjects are created proactively and to be acted upon pre-emptively by algorithmic manipulation of an 
abstract feature space. 

Abstract geometric information spaces 

Computational decision-making techniques generally operate with the spatial metaphor of abstract 
geometric spaces. AI has set off with the idea of abstract information spaces, as an MIT website from 
the 1990s reveals: ‘An information space is a type of information design in which representations of 
information objects are situated in a principled space. In a principled space location and direction 
have meaning, so that mapping and navigation become possible’ (MIT Artificial Intelligence 
Laboratory 1998). In the world of AI, we are interested in meaningful information spaces that do not 
count all available information but only information, which can ‘feature’ in the calculation of a problem. 
These are the features describing to algorithms us and all other things in the world. Together these 
features span an abstract information space using ‘vectors’ of features. For instance, for people we 
might think about gender, height, weight and age as features, each of which is a dimension of the 
problem to be modelled. In this case, we have a four-dimensional feature space. Machine learning 
techniques that have propagated across different fields can tell us how ‘people are materialised as a 
bundle of features’ (Mackenzie 2013). 

Decision-making algorithms plot data as points/dots in feature spaces, which thus become a 
geometrical representation of all the data available to them. Each dot in this space is defined by how 
much abstract space is in-between it and the other dots in the same space or how distant they are 
from each other. For practitioners who operate decision-making algorithms, ‘[d]ata is in some feature 
space where a notion of “distance” makes sense’ (Schutt and O'Neil 2013, 81). In principle, there is 
no limit to the number of features that can be used to build such an artificial space. Feature spaces 
can have hundreds, thousands or hundreds of thousands of features/dimensions, depending on how 
much a computer can process. Machine learning algorithms manipulate this feature space in order to 
create labels for each example that can already be found in the feature space or that might be found 
in the future in the feature space. They ‘partition’ the feature space into zones of comparable features. 
Each data points in these zones is labelled the same way. Labelling is the materialisation of decision-
making by machine learning. 

It is this feature space, which drives the (big) data needs in machine learning: ‘How many data points 
would you need to maintain the same minimum distance to the nearest point as you increase the 
number of inputs of the data? As the number of inputs increases, the number of data points needed to 
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fill the space comparably increases exponentially’ (Abbott 2014, 153), because the number of inputs 
corresponds to the number of features. The more feature dimensions an abstract information space 
has the more space there is to fill in this space. The big data drive is a result of the attempt to fill the 
feature space. In a famous paper Banko and Brill (2001) set the agenda for the big data hype and its 
rationale. They demonstrated that digital reasoning of all kinds gets more accurate by throwing more 
data at it, as the feature space gets filled with data points.  

 

 

Figure 1. Decision Boundaries 

Geometric decision-making 

As analysed by Anrig et al. (2008), there are many examples of decision-making algorithms and how 
they work the feature space. They all ‘partition’ the space into zones to generate meaning for all data 
points in the space. Partitioning is geometric decision-making by algorithms. ‘Decision trees’, e.g., 
partition the space into decisions made over a subset of features. This way, they collect all points in 
the space that are, for instance, of gender female, taller than 1.70m, weigh more than 65 kg, etc. 
‘Clustering’ using nearest neighbours partition the feature space into zones of points that share similar 
feature dimensions and are defined by their border to other zones in the high-dimensional space. 
‘Regression analysis’ as well as ‘(deep) neural networks’ can learn more complex boundaries 
between zones of similar features. ‘Often, different methods are used and the quality of their results 
compared in order to select the “best one”.’ (Anrig et al. 2008, 79). 

We generated the worked example in Figure 1 to demonstrate a feature space with data points in two 
classes (red and blue dots). The space is partitioned into two zones by a complex non-linear 
boundary generated by a neural network. While complex decision boundaries can generate highly 
accurate zones and partitions, they are known to be difficult to understand. Neural networks are 
unintelligible compared to the example of decision trees. Cathy O’Neil likens it to the godlike 
unintelligibility: ‘Like gods, these mathematical models were opaque, their working invisible to all but 
the highest priests in their domain: mathematicians and computer scientists.’ (O'Neil 2016, 7). As 
these models and algorithms are integrated within complex artificial systems, they risk becoming 
‘black boxes’, unintelligible even to the ‘high priests’ of the digital world. ‘In the era of machine 
intelligence’, O’Neil cautions, ‘most of the variables will remain a mystery. (…). No one will understand 
their logic or be able to explain it’ (O'Neil 2016, 157). 

Such ‘unintelligibility’ prevents human observers from understanding how well algorithmic geometric 
rationality works. We cannot be reassured by following the rules of evaluation of the ‘high priests’ 
either, as they are made to make the algorithms perform computationally and not socially. This is 
expressed in what counts for right and wrong decisions in the feature space. Errors and error rates 
are key sites of the transformation of knowledge, but also sites of controversy with regards to 
innocence and non-innocence, as decisions by algorithms are contested. In 2018, e.g., the media 
reported that the company ASI Data Science had developed an extremism blocking tool with 
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government funding of £600,000, which could automatically detect 94% of Isis propaganda with 
99.99% accuracy (Lomas 2018). As reported, this is at best confusing information, as nothing else is 
known about the experiments that led to these error rates. 94% will still be concerning for the security 
analyst dealing with a system like Facebook and billions of new items a day. 6% missed content can 
then mean 1,000s of items. We do not know how the accuracy is measured either but ‘the 
government says’ for ‘one million “randomly selected videos” only 50 of them would require “additional 
human review”.’ (Lomas 2018). This means in our Facebook example a block of ‘50,000 pieces of 
content daily’. Finally, the tool is also single-minded and does not partition the feature space for all 
terrorist content but only for ISIS data of a particular time. Complex digital reasoning tends to be 
single-minded in this way because each feature space is a unique geometry. High accuracy figures 
for decision-making algorithms should never be enough to reassure us that these algorithms are 
correct and make wise pre-emptive decisions.  

The reader might have also noticed a red dot in the Figure 1 far away in the bottom-right non-
innocence blue corner. This is called an outlier and is as such suspicious/interesting, because we are 
not just innocent in the feature space by association with other innocent dots close by but also by 
dissociation with other dots. ‘The outliers are determined from the “closeness” (…) using some 
suitable distance metric.’ (Hodge and Austin 2004, 91). We investigate the relations of digital selves 
and others implied by outlier detection in (Aradau and Blanke, 2018), where we present the real-life 
security impact outlier methods have. Outliers predetermine innocence in feature spaces as much as 
closeness does. 

The data scientist McCue specialises in outlier-detections in predictive policing. She gives an example 
from security analytics that demonstrates the power of outlier detection using a cluster analysis 
(McCue 2014, 102). They monitored conference calls to find clusters of numbers based on 
geographies and regions. ‘[I]t would not have been possible to analyze these data without the 
application of data mining.’ (McCue 2014, 104). The resulting two-dimensional feature space exhibits 
three clusters including one outlying cluster in the bottom-left corner. Features included ‘the 
conference IDs (a unique number assigned by the conference call company), the participants’ 
telephone numbers, the duration of the calls, and the dates’ (McCue 2014, 104). ‘[T]hree groups or 
clusters of similar calls were identified based on the day of the month that the conference occurred 
and the number of participants involved in a particular call.’ (McCue 2014, 106). The outlier cluster 
correctly identified a professional criminal network. For McCue, this approach has various 
advantages. Firstly, one can literally ‘see’ in the feature space why one cluster is different from the 
others and an outlier. Secondly, the information used to cluster the participants is not necessarily 
based on detailed information of individuals in the cluster as it summarises their existence into 
features, and surveillance can take place without much attention to privacy limitations. Finally, the 
clusters that are not outliers build a dynamic, algorithmic model of normality. Non-suspicion or 
innocence is determined by declaring some cluster to be not outliers, while anomalies are outside any 
cluster. The geometrical distance in the feature space makes outlier dots stand out as outliers. 

Conclusion 

This short provocation presented ideas on how innocence through algorithms is pre-determined by 
the position of dots in an abstract feature space and an underlying geometric rationality of distances 
between dots. We examined the foundations of this geometric rationality, its need for more and more 
data as well as issues preventing reasoning about errors critically. To be finally counted as innocent, 
a dot should be close enough to the innocent dots in the abstract space and also not too close or too 
far away in order not to be suspicious again. 

 

* Tobias Blanke is a Professor of Social and Cultural Informatics in the Department of Digital Humanities and 
current Head of Department at King’s College London . 
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